

Rijksinstituut voor Volksgezondheid en Milieu Ministerie van Volksgezondheid, Welzijn en Sport

Microbiological risks in swimming pools and swimming ponds

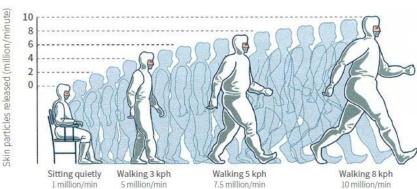
Ciska Schets

swimming pools and ponds

people share a limited amount of water for swimming and bathing

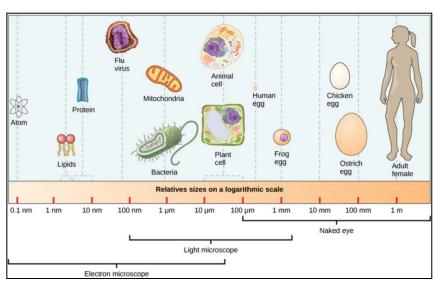
contamination of pool water

- by swimmers
 - sweat, urine, saliva, mucus
 - hair, skin scales, skin oil
 - faecal material
- from the environment
 - carry-in of dirt and pathogens
 - toys and teaching aids
 - dust, dirt, leaves, grass, plant material
 - animals, animal faeces
- through the fill up water or technical parts
 - tap water or water from small water supplies
 - > not very likely, but possible
 - filters or pipes

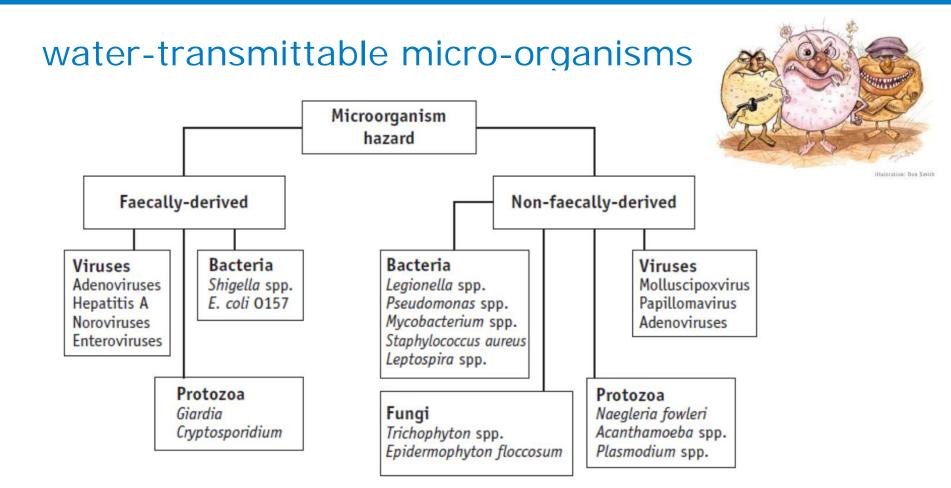

contamination by swimmers

- daily production (not specifically while swimming)
 - 1 litre of sweat
 - 10⁹ skin scales (whether or not with bacteria)
 - 38 gram skin fat (tallow)
 - -50 100 hairs
- washing off of micro-organisms while swimming
 - 10⁵ 10⁶ enterococci and Staphylococcus aureus during the first 15 min
 - ca. 10⁹ bacteria
 during each swim event

THE SKIN WE SHED



Source: Dr. Ken Goldstein Cleanroom Consultants, and Mike Fitzpatrick, Lockwood Greene, Cleanrooms East 99



micro-organisms

- bacteria
 - single-cell organisms without a nucleus; 1–5 µm in size
- viruses
 - genetic material in a protein capsule; nm in size
 - no own metabolism: need a host for reproduction
- protozoa
 - single-cell organisms with nucleus
 - different groups, like parasites
 - > live and multiply at the expense of a host

can cause illness in humans: pathogens

source: WHO 2006

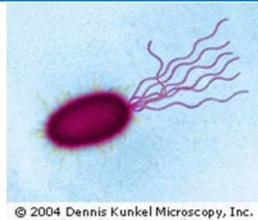
swimming pools vs. swimming ponds

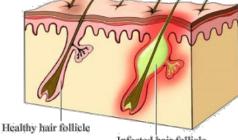
swimming pool

- disinfection (chlorine)
 - residual activity
- chemical water treatment
- filtration

swimming pond

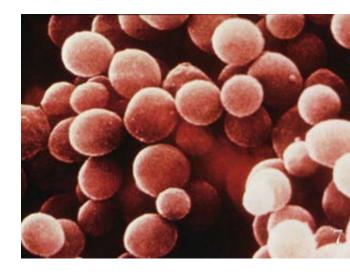
- helophyte filter
 - no residual effect
- no disinfection or chemical processes
- filtration


relevant micro-organisms


resistant to disinfection/thrive and grow in absence of disinfection

Pseudomonas aeruginosa

- commonly present in water, vegetation and soil
- grows in water with temperature over 18-20 °C
- forms biofilms on surfaces
- causes
 - skin conditions and ear complaints
 - urinary tract, eye and wound infections
- relation between infections and
 - insufficient disinfection and/or cleaning
 - (too) high bather load

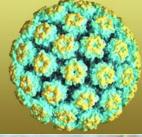

Infected hair follicle

Staphylococcus aureus

- humans are the only known reservoir
 - nasal mucosa, pharynx, skin, faeces
 - excreted while swimming
- mostly at the water surface
- causes
 - skin infections, wound infections
 - urinary tract, eye and ear infections
- relation between health complaints and
 - (too) high bather load

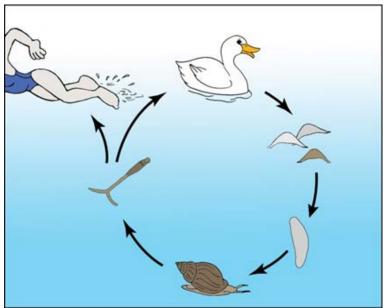
Legionella

- grows in warm water (> 25 °C)
- occurs in man-made aquatic environments and natural (thermal)springs
- causes
 - Legionella pneumonia
 - Pontiac fever
- infections through inhalation of aerosols
- known infections related to whirlpools and showers



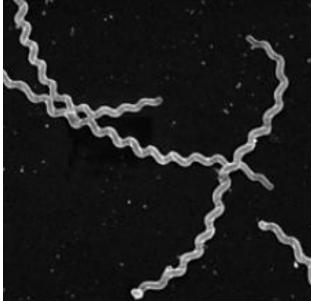
enteric pathogens

- enteric viruses
 - such as norovirus and enterovirus
- protozoan parasites
 - such as Cryptosporidium and Giardia
- transmission faecal-oral
 - faeces (or vomit) in pool water
 - unhygienic toilets
- cause gastroenteritis: diarrhoea and/or vomiting
- disease outbreaks associated with swimming pools
 - faecal contamination of pool water
 - defect in water treatment system



swimmers' itch

- larvae of a parasite of water fowl
- Trichobilharzia
- in clear, clean, stagnant water with plants
- causes skin complaints: itching and red bumps



leptospirosis

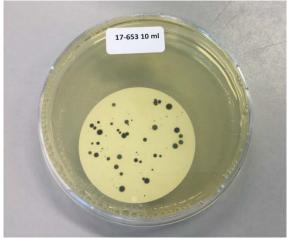
- Leptospira-bacteria
- in kidneys of animal host (rat, cattle), excreted with urine
- cause flu-like symptoms in humans
 - mild (mud fever) to serious (Weil's Disease)

pathogens vs. indicators

- impossible to check water for all pathogens
 - which one?
 - too laborious & expensive
- use indicators
 - bacteria with simple detection procedure
 - information about
 - > microbiological contamination
 - > water treatment system

infections due to swimming pool visits

- insufficient water treatment and/or disinfection
- poor cleaning or insufficient maintenance
- by micro-organisms
 - that thrive and multiply in the pool environment
 - that live on or in swimmer's bodies
 - through direct contact between swimmers
- prevention through removal and killing of micro-organisms
 - adequate water treatment
 - regular checking of water quality
 - > swimming pool legislation
 - > microbiological parameters



swimming pool legislation

- regular checking of water quality to protect the health of swimmers
- Dutch Whybz/Bhybz
- Bhybz is under revision
 - will become part of the new Environmental Act in 2021
- new legislation will include requirements for different pool types, amongst others:
 - swimming ponds
 - > physical
 - > chemical
 - > biological
 - > microbiological

microbiological parameters for swimming ponds

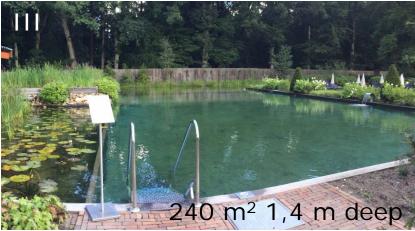
parameter	norm	location	frequency
Pseudomonas aeruginosa	10/100 mL (<1/100 mL)	basin	1/week (1/month)
intestinal enterococci	50/100 mL (<1/100 mL)	basin	1/week (1/month)
Escherichia coli Spores of Sulphite Reducing Clostridia	100/100 mL (<1/100 mL)	basin	1/week (1/month)
Staphylococcus aureus	<1/100 mL (<1/100 mL)	basin	1/week (1/month)
Legionella	<100/L (<100/L)	risk points	1/week (1/quarter)

role/meaning of microbiological parameters

parameter	water treatment	faecal contamination	pathogens
P. aeruginosa	effectivity maintenance		itself
IE	effectivity	recent	possibly enteric pathogens
EC	effectivity	very recent	possibly enteric pathogens
S. aureus	effectivity related to bather load		itself
Legionella	effectivity maintenance		itself

swimming pond study 2017

- aims
 - gain insight into water quality of Dutch public swimming ponds
 - evaluate feasibility of new requirements
- 4 swimming ponds in The Netherlands
- sampled 3 times between July and September
- 3 time points of sampling per sampling day
- tested for
 - > physical: water temperature, turbidity
 - > chemical: conductivity, pH
 - > biological: quick look for fish, snails and birds
 - > microbiological: E. coli, int. enterococci, P. aeruginosa, S. aureus
 - > additionally: number of swimmers



swimming ponds

summary of results - general observations

- sampling during the day: no distinct differences
- sampling at different sites: no distinct differences
- sampling at different days: different values
- relation with water temperature
 - for most parameters not
 - minor for P. aeruginosa in pond III and IV
- relation between microbiological parameters and number of swimmers
 - variable for different ponds
 - > 1: no
 - > II: yes, for all microbiological parameters
 - > III: no
 - > IV: only for *S. aureus*

summary of results – concluding remarks

- pH exceeds max. value of 8.5 in two ponds
 - pond II: 18/27 samples
 - pond IV: 15/30 samples
- water temperature exceeds max. value of <25°C in one pond
 - pond I: 17/30 samples
- conductivity: max. value of 1000 μS/cm never exceeded
- faecal contamination is minor
 - 3 samples exceed max. value of 100/100 ml EC, in pond III
 - 6 samples exceed max. value of 50/100 ml IE, in pond I
- P. aeruginosa seems no problem
 - 1 sample exceeds max. value of 10/100 ml, in pond III
- S. aureus is a problem in all four ponds
 - 86/95 samples exceed max. value of 1/100 ml

further discussion and study

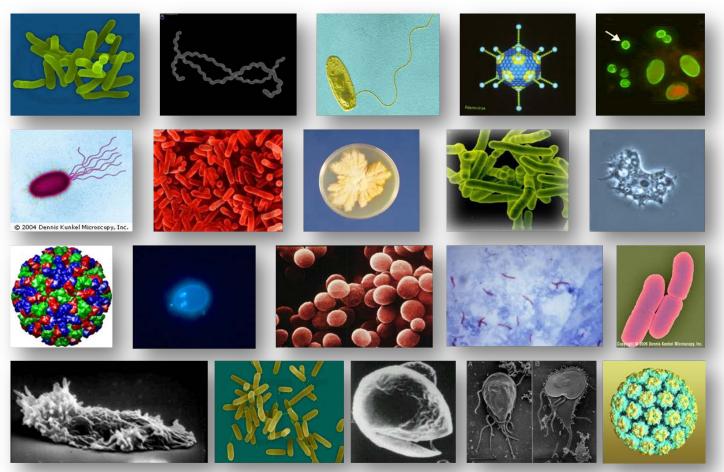
- analytical methods for microbiological parameters in swimming ponds
- faecal contamination indicator parameters
 - according to discussion EU BWD
- S. aureus parameter in relation to bather load

preventive measures

- shower before swimming (preferably naked)
- toilets
 - easy to find and to reach
 - proper hygiene
- inform the public
 - do not swim while ill (particularly with gastroenteritis)
 - do not swallow water
 - importance of proper hygiene before and during swimming

acknowledgements

- Ministry of Infrastructure and Environment for funding
- developers, builders and owners of the swimming ponds for cooperation
- Sander Voortman for support and coordination of cooperation
- Gretta Lynch and Sharona de Rijk for sampling
- Gretta Lynch, Sharona de Rijk, Christiaan Veenman and Anna Gritchina for analysis of samples



questions?

