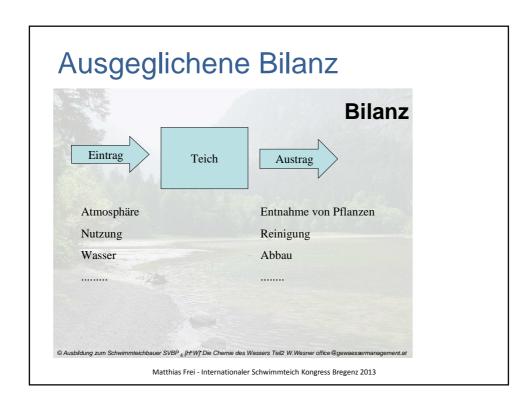
Internationaler Schwimmteich Kongress Bregenz 201:

Warum Naturpools funktionieren...

Grundlagen der Bildung von Biofilm in Abhängigkeit von Nährstoffangebot und –anlieferung

Matthias Frei


MSc. ZFH in Umweltingenieurwesen Forschungsgruppe Ökotechnologien ZHAW Zürcher Hochschule für Angewandte Wissenschafter E-Mail <u>matthias.frei@zhaw.ch</u>

1

FAQ: Häufig gestellte Fragen 1

• Wie bringe ich die Algen und Biofilm weg?

Austrag in Kat. 4 + 5: Biofilter

Faktoren für die Dimensionierung von biologischen Filter:

 Der biologische Filter muss so dimensioniert werden, dass gelöste Verunreinigungen gebunden oder abgebaut werden können.

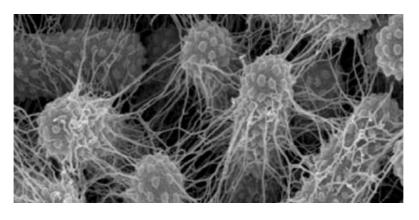
Hat der Filter gearbeitet?

FAQ: Häufig gestellte Fragen 2

- Wie sieht der perfekte Filter aus?
 - Material?
 - Korngrössen?
 - Schichtung?
 - Filtergrösse?
 - Handling: Inbetriebnahme? Betriebsdauer? Rückspülen?
 - Mangelnährstoffe?
 - Beschickung, Anströmungsgeschwindigkeit?
 - _

Sicht auf die Praxis

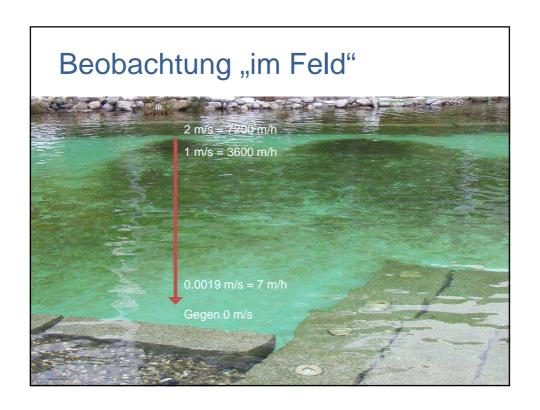
 Verschiedenste Aufbau- und Beschickungsvarianten mit diversen Materialien, aber eigentlich immer ein ähnliches Grundprinzip:

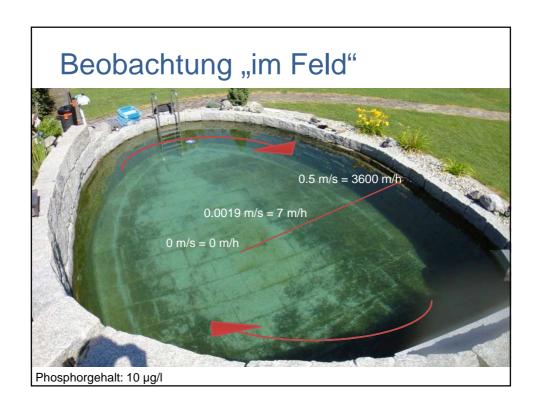

Ein durchströmter Substratkörper in dem Biofilm gezüchtet wird

Wie sieht der perfekte Filter aus?

Die eigentliche Frage ist daher vorerst:

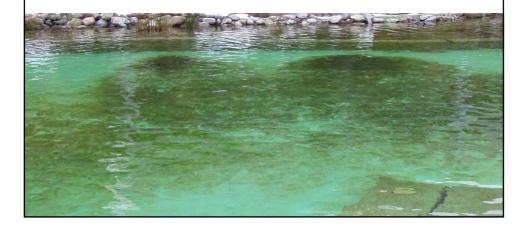
- Was braucht der Biofilm um rasch zu wachsen?




Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Beschickung / Strömungsgschwindigkeit

- Grosse Unterschiede in der Beschickung:
 - Bei den meisten Systemen die heute auf dem Markt sind:
 - → 2-120 m/m2/Tag
 - → V_{eff} = Strömung am Biofilm: 0.25-25 m/h (abhängig von der Substratform)



Ziel der Arbeit

Bildung von Biofilm unter Schwimmteichbedingungen in Abhängigkeit von Nährstoffangebot und –anlieferung"

Methodische Grundgedanken

- Einflussfaktoren müssen klar definiert und kontrolliert sein:
- Einträge/Austräge
- Temperatur, pH, Licht, Sauerstoff, etc.
- Wasserzusammensetzung (Nährstoffe, Spurenelemente)
- Mikrobiologie
- Materialien
- → Der Versuch soll prinzipiell auf der ganzen Welt reproduzierbar sein.

Methoden (was interessiert uns?)

Gewässertyp	Phosphor Limit.	Stickstoff Limit.	Karbonat Limit.	Licht- Limit.	Transport- Limit	Biologie Hemmung	Wasserwechsel
Schwimmteich Kategorien 1-3	< 30 μg/l	möglich	nein	ja	ja	nein	nie
Schwimmteich Kategorie 4, 5	< 10 µg/l	nein	nein	nein	nein	nein	nie
Schwimmteich Kategorie 5 _{plus}	< 4 μg/l	nein	nein	nein	nein	nein	nie
Gartenteich, Pflanzenteich	nein	nein	nein	ja	ja	nein	nie
Chlorpool, Silber etc. (Salzelektrolyse = Chlor)	nein	nein	nein	nein	nein	ja	ja
Kalkteich , pH >10	ja	nein	nein	nein	nein	leicht	nie
Salz 5 g/l	nein	nein	nein	nein	nein	ja	ja
Salz 35 g/l, Kategorien 1-3	< 30 μg/l	möglich	nein	nein	ja	nein	nie
Salz 35 g/l, Kategorie 4, 5	< 10 µg/l	nein	nein	nein	nein	nein	nie
Salz 35 g/l, Kategorie 5 _{plus}	< 4 μg/l	nein	nein	nein	nein	nein	nie
Moorsee	möglich	möglich	ja	möglich	möglich	möglich	nie
Fischteich (Koi, pH mit HCl gesenkt)	nein	nein	ja	möglich	nein	nein	Ja

Quelle: Skript ASC Expertenausbildung
Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Methoden

Wasserzusammensetzung

Algenzuchtwasser als Testwasser nach DIN 38412 + Kohlenstoffquelle:

Reinstwasser aufgedüngt mit allen Nährstoffen und Spurenelemente für optimale Wachstumsbedingungen, nur eine Limitierung durch Phosphor → Nachweis der Limitierung nach Liebig

Phosphorgehalte im Test:

- 10 μg P/Liter
- 20 μg P/Liter

Methoden

Steuerung der Umweltbedingungen

- Stabilisierung pH 8.4 → berücksichtigt im Testwasser nach DIN mit Natriumhydrogenkarbonat
- Sauerstoffsättigung → geringe Zehrung, immer 95-100 %
- Licht aus → Filterbedingung, Verhinderung von Algen
- Mikrobiologie → Innokulum
- Wassertemperatur: Konstant durch Umgebungstemperatur bei 20 Grad
- Andere Umwelteinflüsse wurden durch einen geschlossenen, klimatisierten Raum verhindert

Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Methoden

Materialwahl

Menzl Objektträger Gläser

Vorteile:

- Inertes Material (gibt selber keine Stoffe ab oder nimmt sie auf)
- Definierte Oberflächenbeschaffenheit (Struktur)
- Klar definierte Oberfläche (m2)
- Sehr kostengünstig (Ermöglicht viele Messpunkte im Rahmen des Budgets) → 240 "Biofilme" wurden gezüchtet

Methoden

Ermittlung Biofilm Trockensubstanz (TS)

- Trocknen im Trockenschrank: 1 h bei 105 °C
- Temperatur im Exsikkator angleichen (ohne L-Feuchtigkeit)
- Abgleich an die vorhandene Luftfeuchtigkeit: 4 h
- Biofilm abschaben und Staubfrei wiegen (Genauigkeit 100 μg)
- Gewichtsveränderung durch die aktuelle Zimmer-Luftfeuchtigkeit durch einen ermittelten Korrekturfaktor ausgleichen
- → "Schon" hat man das exakte Biofilm Trockengewicht

Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Methoden

Einzige variable Grösse: Strömungsgeschwindigkeit

14, 18, 42, 56, 70, 84, 99 m/h

Resultat 0.250 0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0.200

0

Abbildung: Mittleres Biofilmwachstum gemessen als Trockensubstanz in Abhängigkeit der Anströmungsgeschwindigkeit und Phosphorgehalt nach 56 Tagen Kultivierung bei 10 bzw. 20 µgP/l.

Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Fazit

Sofern Biofilmwachstum das Ziel ist: Veff: Desto schneller, desto besser.

- Eine zu schnelle Durchströmung im Filter werden wir, zumindest aus Sicht des Biofilms, in unseren Grössenordnungen kaum erreichen!
- Massgebend ist die Fliessgeschwindigkeitsdifferenz zwischen Filtermaterial-Oberfläche und Schwimmbereich-Oberflächen
 – Desto grösser, desto besser!

Fazit

- Gemäss dieser Ergebnisse ist die Leistung bezüglich P-Bindung im Biofilter noch extrem steigerungsfähig!
- In einem Durchlauf durch den Filter ist bei schneller Fliessgeschwindigkeit die Phosphorreduktion zwar geringer, im Summe im gesamten Kreislaufsystem aber höher.
- Es lohnt sich daher, die Filtersysteme der Kategorie 4 und 5 in heutiger Form bezüglich dieser Grundsätze grundsätzlich zu überdenken.

Matthias Frei - Internationaler Schwimmteich Kongress Bregenz 2013

Projekt Biofilter

Ermitteln der Leistung verschiedener Filtermaterialien und Betriebsmodi

- Entwicklung eines Prüfstandverfahrens für Filtersubstrate
 - Welchen Einfluss auf die Aufbaugeschwindigkeit von Biofilm haben verschiedene Filtersubstrate und Betriebsmodi?
- → Effektive Leistungs-Bestimmung von Systemen ist damit reproduzierbar zu Ermitteln
- → Systemunabhängige Datenblätter zur Leistungsbezeichnung von Filtern

Projekt in Kooperation:

Danke für Ihre Aufmerksamkeit und auf Wiedersehen

